
Numerical methods for solving differential equations
A baseball traveling through the air is acted upon by only two forces, namely gravity and
the aerodynamic force. If the ball has little spin, the aerodynamic force is nearly all drag
and acts opposite to the direction of velocity. The equation of motion is

gravity dragF F ma+ =
r r r

This is a vector equation and each vector has a horizontal and a vertical component.
Because the drag is a non- linear function of velocity, 2

dragF v∝
r

, we will not be able to

find an analytic solution and a numerical solution will be necessary. Hence, we have two
second-order non- linear differential equations. The usual technique is to replace the two-
second order differential equations with four first-order equations. The four variables are
the horizontal and vertical components of the position, x and y, and the velocity, vx and vy,
respectively. The four equations are

cos

sin

x

y

dragx

dragy

dx
v

dt
dy

v
dt

Fdv
dt m

F gdv
dt m

θ

θ

=

=

=

−
=

r

r

where m is the mass of the ball and ? is the angle between the velocity vector and the
horizontal. Note that ? changes continuously as the ball flies through the air. Euler’s
method is the simplest of the finite difference methods for integrating this set of
differential equations. Although it is not recommended for practical use, it serves to
illustrate the underlying strategy.

Consider the equation for dvx/dt which can be rewritten as

(),x
x

dv
f t v

dt
= .

If we know the horizontal component of the ball’s velocity at the moment it leaves the
bat, t = 0, then we can evaluate the tangent to the solution at this point by evaluating

(), xf t v . We advance the solution by moving in the direction of the tangent by a small
amount. This is the time step input used in the program. If the change in t is ? t, then the
change in vx along the tangent direction is given by (),x xv f t v t∆ = ∆ . This yields a new
point on an approximate solution to the differential equation. This process is repeated
until the desired value is reached. Trajectory.exe terminates when the vertical position
drops below the initial altitude.

The algorithm can be schematically represented as:

Initial (), xt v

(),x x xv v f t v t

t t t

= + ∆

= + ∆

Repeat

Euler’s method is not very accurate nor is it stable. Trajectory.exe uses a more
sophisticated algorithm called a fourth-order Runge-Kutta. Details of this algorithm may
be found in Numerical Recipes.

